金属化薄膜电容器的失效分析,容器大小 -凯发k8娱乐

金属化薄膜电容是我们生活中常见常用的电容器之一,金属化薄膜电容器拥有自愈性的的优越性能而被大家熟知,本文谈谈两个关键的点,造成薄膜电容的失效原因有哪些,希望本文的内容能帮助到大家,一起往下看吧!

1.局部放电造成

由于加工过程中介质中存在微小气隙,金属化电容器“过度自愈”造成气隙,导致金属化薄膜电容器在高电压作用下产生局部放电,电容器内部会迅速大量的热,来不及散发,又造成周围介质的进一步破坏,局部放电加剧,形成恶性循环。

2.损耗引起的电容器温升

一个理想的电容器在工作时没有量耗散,但由于介质损耗和电容器内部金属电阻和接触电阻的存在,使电容器呈现明显的组态特性。在有负载时导致金属化薄膜电容器发热,并经电容器外表将热量散到周围环境中去,从中间到外表之间建立一个温度梯度,当发热量小时,发散热平衡;当发热量大时,发散热不能平衡,电容器温度升高,导致失效,引起外壳膨胀、变形、开裂、膜熔融成团块,严重时会发现燃烧等现象。为此,损耗是发热的根源,造成金属化薄膜电容器失效的主要因素。

王凯平

(常州常捷科技有限公司,江苏 常州 213031)

摘要:脉冲或交流应用的干式金属化薄膜电容器在制造过程中,介质薄膜层与层之间不可避免的存有气隙。当运行电压超过某一值时,会发生气隙电离,导致金属化镀层被蒸发而形成大小不一的电离斑点,减小了电极的有效面积,显著降低了电容量值从而影响设备的正常运行;通过等效电路的计算,提出了介质相对介电常数大小影响电容器电离电压高低的关系式,显示了在高能量密度脉冲功率电容器的研发中过度追求高介电常数介质的路径可能存在的问题;文末列举了两份实验数据,提出了解决气隙电离的参考途径。

关键词:干式金属化薄膜电容器;气隙;气隙电离;电离斑点; 电离电压; 解决途径doi:

中图分类号:tn609 ?? 文献标识码:b? ??

----------------------------------------------------------------

? ? ? 脉冲功率电容器是新概念电磁武器包括电磁脉冲武器和电磁动能武器等的脉冲功率电源的关键件,也是激光激发核聚变系统的基础件 [1]98。从文献公开的国内外数据看,此类脉冲功率电容器的充放电寿命大多不长,在能量密度为2.0 j /cm3左右时仅数千次而已。即使美国ga公司研制的cmx型电容器在2.0 j /cm3条件下,也只能达到5万次的水平 [1]99,实用价值似乎仍然不高。正常情况下,脉冲功率电容器充放电寿命的长短是指在规定的容量衰减条件下充放电次数的多少。显然此类电容器在充放电试验或实际应用过程中必然会产生电容量的减小,这种减小会导致脉冲功率装置无法正常运行。分析其原因,电容器介质层间发生了气隙电离应该是其中之一。因此,对于干式金属化薄膜电容器而言,深入讨论研究其气隙电离的有关问题对于增加脉冲功率电容器的充放电寿命具有一定的意义。

1? 气隙电离发生的原理

? ? ? 金属化薄膜电容器在制造过程中,介质薄膜层与层之间不可避免的存在着气隙。由于薄膜厚度的不均匀,薄膜表面的不平整,甚至金属化镀层厚度和薄膜表面之间的空隙以及生产工艺等因素,这种气隙在某些位置还会比较严重。因此,金属化薄膜电容器如果无法消除这些气隙,则在脉冲或交流应用中当脉冲或交流电压超过某一水平时,上述存在的气隙会被电场击穿,发生气隙电离。电离时由于气隙“中性分子的外层电子将脱离分子的束缚”而逸出[2] ,在电容器介质薄膜和相邻一层薄膜的金属化镀层电极之间,产生带电荷的正、负离子。由于电场的作用,这些正、负离子在不同的层间分别向电容器的负、正电极运动,在和电极接触前瞬间产生放电火花,其能量蒸发掉对应位置的金属化镀层,在作为电极的金属化镀层上形成基本规则为圆形但大小不一的电离斑点。气隙电离发生的原理示意图:不均匀,薄膜表面的不平整,甚至金属化镀层厚度和薄膜表面之间的空隙以及生产工艺等因素,这种气隙在某些位置还会比较严重。因此,金属化薄膜电容器如果无法消除这些气隙,则在脉冲或交流应用中当脉冲或交流电压超过某一水平时,上述存在的气隙会被电场击穿,发生气隙电离。电离时由于气隙“中性分子的外层电子将脱离分子的束缚”而逸出[2] ,在电容器介质薄膜和相邻一层薄膜的金属化镀层电极之间,产生带电荷的正、负离子。由于电场的作用,这些正、负离子在不同的层间分别向电容器的负、正电极运动,在和电极接触前瞬间产生放电火花,其能量蒸发掉对应位置的金属化镀层,在作为电极的金属化镀层上形成基本规则为圆形但大小不一的电离斑点。气隙电离发生的原理示意见

图1?电容器介质层间发生气隙电离的原理示意

2 ??气隙电离现象的实例描述

? ? ? 发生气隙电离后的电容器,在介质薄膜电极镀层上形成电离斑点的两例状况见图2和图3。

图2 形成电离斑点的金属化薄膜图例之一

图3 形成电离斑点的金属化薄膜图例之二

? ? ? 图2是一只1000pf的圆柱形多串联电容器在10kvac电压下数分钟内迅速发生气隙电离并解剖后两层金属化薄膜的图片。图中白色条状为介质薄膜,黑色条状是薄膜上的金属化镀层,其上的白色圆点、半圆点即为金属化镀层被蒸发后的电离斑点。在电容器电极上施加10kvac电压强迫其迅速发生气隙电离时,在电容器外表面能看到放电火花,并能听到“叭叭”的放电声响。仔细观察图2可以发现,位于金属化镀层条边缘处的电离斑点大都呈半圆或大半圆形态,而且面积较大;而在金属化镀层条上的斑点则呈现圆形且面积较小。这一现象表明,在金属化镀层条的边缘,由于10nm左右的镀层厚度和薄膜表面之间形成的空隙使得该处存在较多的气隙,而相对集中的较多气隙电离增加了该处的放电能量,从而蒸发掉较大面积上的金属化镀层;而缺失的半圆部分,则是因为该处没有金属化镀层电极而不会吸引带电离子的撞击,因而不存在放电火花,也不可能出现电离斑点。此外,电离斑点的不规则分布可以说明气隙的不规则存在。

? ? ? 图3是一只交流状态间歇使用三年后因为电容量下降20%而失效的电容器在解剖后两层金属化薄膜重叠在一起的图片,图4、图5则是把重叠的两层薄膜分开后单层薄膜的电离状况。该电容器使用边缘加厚金属化薄膜制造。仔细观察图4、图5可以看到,两层薄膜上的气隙电离现象有三个特点:其一是在金属化边缘加厚区电离斑点较少而且面积较小,这是因为在边缘加厚部位的金属化镀层较厚,并由此导致了电容器芯子在压扁定型时薄膜层与层之间相对致密而气隙较少的缘故;其二是在金属化加厚区和普通区的交界处,均有一排面积较小但非常密集的电离斑点,这一方面是由于该处的金属化镀层在此有一个由厚向薄的过渡带,导致该处气隙较多,因而气隙电离也就较多,另一方面是由于该处镀层厚度尚未明显降低,气隙电离时蒸发掉的金属较少而致电离斑点也较小;其三是在薄膜宽度方向靠近镀层加厚区一侧、离开加厚区的部分,因为金属化镀层较薄,气隙也较多,同样的放电能量能蒸发掉更大面积上的镀层金属,因而导致了这一区域产生大量面积较大的电离斑点

图4图3中重叠的介质分开后一层薄膜的状况

图5? 图3中重叠的介质分开后另一层薄膜的状况

3? ?气隙电离的后果

? ? ? 在灯箱上和高倍放大镜下观察上述图2至图5所示的气隙电离现象可以发现,电离斑点所在位置的介质薄膜基本正常,均没有发生穿孔,仅是表面上金属化镀层被蒸发掉而已。图4中几个电离斑点的放大图片见图6。其它发生更为严重气隙电离的电容器,尽管电容量下降甚至超过50%,但电容器仍未发生击穿的现象也可以证明此点。因此可以判断,对于金属化薄膜电容器而言,无论是短时内强迫发生的气隙电离,或是在较长工作时间内逐步发生的气隙电离,实际上不会发生介质的电离击穿,即是说,金属化薄膜电容器不存在介质电离击穿的问题,因为一旦气隙电离发生,其造成的电离斑点已经没有了金属化镀层而不再处于电容器的工作电场之中,也就不存在介质进一步被击穿的问题。因此,在脉冲或交流电压的作用下,电容器介质和相邻电极镀层之间的气隙电离给我们带来的后果不是文献所述“交流电压下的电离性击穿 [3]207”, 而是大量产生的电离斑点造成了极板面积的明显减小,从而造成电容量的显著下降而致电容器失效,严重缩短了电容器的使用寿命。对于脉冲功率电容器而言,如果存在气隙电离这一问题,则可能因为电容量的减小而达不到输出能量的要求,导致脉冲功率装置无法正常运行;对于电动机运转电容器而言,则由于电容量的减少会导致力矩减小,使得电动机不能正常运转。

图6? 图4中几个电离斑点的放大图片

4? ?气隙电离与自愈击穿的区别

? ? ? 金属化薄膜电容器在介质击穿时具有自愈的功能,自愈时也会发生放电声响并形成基本规则为圆形但大小不一的斑点,并导致电容量的减小。由此在一些场合会把气隙电离和击穿自愈两者混淆起来,但实际上它们却是两种不同的物理现象。不同于气隙电离的发生机理,自愈是在介质击穿瞬间,电容器的两个电极间在击穿位置发生间隙放电并形成瞬间的电流通路,导致了瞬间的过电流流过,间隙放电和瞬间过电流产生的热量蒸发掉穿孔点周围介质上的小块金属化镀层而形成斑点,并因此把穿孔点孤立于电容器工作电场之外而自愈。显然,不同的发生机理导致了气隙电离和击穿自愈两种现象存在着有无击穿孔的根本区别。此外,应该如何有效防止这两种现象的发生,也有着完全不同的途径。图7是一个击穿自愈斑点的图片,在放大镜下仔细观察自愈斑点,可以看到在击穿孔周围存在着一圈薄膜受热收缩形成的堆积物。

图7 金属化薄膜击穿并自愈后的图片

5? ?气隙电离的等效电路及分析

? ? ? 上述分析表明,对应用于脉冲和交流状态的干式金属化薄膜电容器而言,气隙电离是一个必须引起足够重视的问题,有必要进一步深入分析。

? ? ? 文献建立了具有封闭气隙的无机介质电容器模型,并导出了模型的等效电路[3]208。参照其原理,可以建立气隙在介质和金属化镀层之间的金属化薄膜电容器模型及其等效电路如图8。在电容器中,气隙的分布是不均匀的,各个位置的气隙大小也不相同。按照模型,我们仅针对某一个扁平型且垂直于电场方向的气隙具体分析其击穿电压和电容器开始发生气隙电离的门槛电压之间的关系,并分析影响气隙电离的三个因素。

图8 分析气隙电离的电容器模型和等效电路

? ? ? 在图8中,处于电场中的气隙具有厚度d1及面积s时,实际上构成了一个电容器。由于空气的相对介电常数近似为1,因此其电容量c1=ε0s /d1,ε0为真空绝对介电常数;而对应于气隙,由相对介电常数为 εr、厚度为d的介质构成了面积和c1相同的电容器c2,其电容量为c2= εrε0s /d。显然,如图所示,当在电容器的两电极间施加电压u时,处于同一电场中的介质电容器c2和气隙电容器c1上的分压关系为u2 / u1=c1/c2=d /εrd1 ,因而有:u2=u1d /εrd1,所以有u=u1 u2=u1(1 d /εrd1)。

? ? ? 根据对气隙电离现象的分析,在上式中当分配在气隙电容上的电压u1达到气隙的击穿电压ub时,气隙开始发生电离。此时施加于电容器电极的电压u=ui ,称之谓电离电压,实际上就是电容器可能发生气隙电离的起始门槛电压,于是有:ui =ub(1 d /εrd1)(1)

(1)式中,ub作为空气气隙的击穿电压,在同样外部条件下可以认为其值是不变的。因此,(1)式表明了电容器的电离电压ui受d、εr和d1影响的关系。介质厚度d越大、相对介电常数εr和存在的气隙d1越小,越有利于提高电容器电离电压ui的水平。但在工程上,由于介质厚度的增加会显著增大电容器的体积而没有选择的空间,所以不可能通过介质厚度来提高电离电压;而对于介质相对介电常数,就目前状况而言,基本上没有选择的余地。因此,影响电容器电离电压ui的主要因素是介质层间存在的气隙d1。如同前文对气隙电离实例的描述和分析,电容器产生电离斑点的状况,主要取决于介质层间存在气隙的状况,包括气隙的多少、大小和位置的分布,也和导致气隙电离发生时气隙所处电场强度的大小以及对应位置镀层金属的厚薄等因素有关。

? ? ? 根据(1)式,可以具体分析介质相对介电常数εr和存在的气隙d1对电容器电离电压ui的影响程度。

6? ?介电常数大小对气隙电离的影响

? ? ? 虽然目前对介质相对介电常数基本没有选择余地,但在脉冲功率电容器的研发中,为了提升能量密度指标,往往会追求相对介电常数更高的聚合物介质,希望εr达到10甚至更高。如此材料制成的电容器,其它如放电特性等性能不论,单就气隙电离可能导致电容器电容量下降、充放电寿命缩短就是一个不容小觑的问题,必须重视。由此,对于相对介电常数εr对气隙电离的影响,使用比较方法进一步作如下分析:

? ? ? 假定有2只电容器ca和cb,他们的d和d1均相同,但介质的相对介电常数εr不同,而且有εrb=nεra,n > 1。根据(1)式有:

uia=ub(1 d /εrad1)=ub(d εrad1)/εrad1

uib=ub(1 d /nεrad1)=ub(d nεrad1)/ nεrad1

于是有:uib/ uia=(d nεrad1)/(nd nεrad1) (2)由于n>1,必然nd>d因此:uib/ uia<1

? ? ? ?(2)式表明介质相对介电常数εr大的电容器在d和d1相同条件下比εr小的电容器电离电压会降低,而且εr越大,电容器的电离电压降得越低,在同样工作电压下更容易发生气隙电离。如果考虑在金属化薄膜电容器中气隙厚度d1非常之小,远不足以用μm来度量,在(2)式中我们把d1项舍去,则有:uib/ uia= 1/n (3)

? ? ? (3)式中的n为两种介质材料相对介电常数大小的比值,该式近似表明了介质相对介电常数大小影响电容器电离电压高低的反比关系。按照此式,如果使用相对介电常数为11的聚合物介质制造电容器,则与使用聚丙烯膜介质的相同电容器比较,前者的电离电压即开始发生气隙电离的门槛电压会降低至后者的大约1/5。

7? ?气隙多少对气隙电离的影响

? ? ? 有文献指出,“有这样一个最小电压值约250v(有效值),比它再低时,游离就不发生了[4]”。实际上,这一“最小电压值”的界限是有气隙多少的条件的。如果包括工艺在内的各种因素不能保证电容器介质层间存在的气隙低于某一水平,则很可能在200v(有效值)甚至更低的情况下,仍旧会发生气隙电离。可以作如下分析:

? ? ? 假设金属化聚丙烯膜电容器c在介质厚度为d、层间气隙为d1时的电离电压为ui,如果c的层间气隙d1增加为d1'且d1'=nd1,n>1,那么该电容器的电离电压ui'会在ui的基础上下降多少?

根据上述假设和(1)式,有:

ui=ub(1 d /εrd1)=ub(d εrd1)/εrd1

ui'=ub(1 d /εrnd1)=ub(d εrnd1)/ εrnd1

由此:

ui'/ ui=(εrnd1 d)(εrd1)/ (εrnd1)(εrd1 d)=(εrnd1 d) / (εrnd1 nd ) (4)

由于n>1,必然nd>d因此:ui'/ ui<1

? ? ? ?(4)式表明,介质层间气隙多的电容器,其电离电压一定偏低。如果考虑气隙厚度d1远不足以用μm来度量,在(4)式中把d1项舍去,则有:

ui'/ ui= 1/n (5)式中的n为同样电容器中介质层间气隙多少的比值,该式近似表明了电容器介质层间气隙多少影响电容器电离电压高低的反比关系。如果由于材料、工艺等因素导致电容器c的层间气隙在原来d1的基础上增加25% 即n=1.25,则电容器c的电离电压可能从原来的ui下降为0.8ui,即是说如果ui原来为250v(有效值),则气隙增加一定量后可能ui就降为200v(有效值)了。

8? ?解决气隙电离的参考途径

? ? ? 在大多应用场合,额定的脉冲电压或交流电压都会远高于电容器的电离电压。在此条件下,解决电容器的气隙电离问题只有两条途径:其一是消除存在于电容器介质层与层之间的气隙;其二是采用多串联的办法使其中每一串电容器上的工作电压低于其电离电压,从而不会发生气隙电离。

? ? ? 图9、图10显示了两只圆柱形多串联电容器在同样条件的脉冲充放电试验24万次并解剖后金属化薄膜(重叠在一起)的状况[5]。显然,图10电容器发生了严重的气隙电离,致使其与标称值0.02μf相比,电容量下降了17% ,仅为0.0166μf,而且可以看到电离斑点大量发生在金属化镀层条的边沿,和图2所示状况相似。其原因也和图2电容器相同,是由于金属化镀层厚度和薄膜表面之间的空隙处积聚了较多气隙而造成,由此也能看出气隙d1之小。而图9电容器测量电容值几乎没有变化,解剖图片显示金属化薄膜状态正常,没有发现电离斑点。这两只电容器额定指标相同,尺寸均符合要求,只是设计上图9电容器比图10电容器多了一串。由此可以推测,恰恰是多出的这一串降低了每串电容器上承受的试验电压,使得此试验电压低于了它的电离电压。根据上述分析的结果还可以推测,若使用εr较高的介质材料来制造上述规格的电容器,则即使采用和图9电容器相同的串数时也可能导致气隙电离的发生。

图9 充放电试验后基本正常的金属化薄膜

图10 充放电试验后发生气隙电离的金属化薄膜

? ? ? 图11是三组多串联电容器充放电寿命试验的曲线图,三组电容器均为0.02μf,但结构分别为6串、7串和12串,试验条件为温度100℃,脉冲电压15kv,频率2.3hz[6]。试验曲线图表明:2只6串结构电容器在充放电39万次和78万次后均发生了严重的气隙电离,致使电容器的电容量发生雪崩式大幅下降;而7串结构的电容器在180万次充放电试验后电容量下降约为10%;至于12串结构的电容器则在180万次充放电试验后电容量变化很小,基本没有发生气隙电离。

? ? ? 上述两例高压电容器充放电寿命试验结果表明,对于在脉冲或交流工作状态的电容器,尤其是高能量密度要求下的干式高压脉冲功率电容器,必须设计有合理的串联数才能防止其气隙电离的发生,由此提升其充放电次数,保证达到更高使用寿命的要求。如果为了提升电容器能量密度指标而使用介电常数εr较大的介质材料,则对串联数会有更高的要求,并且由此也会对介质材料的厚度控制造成更大的难度。

图11 三组高压电容器充放电寿命的比较

9? 结论

? ? ? 在储能、电力等领域,使用干式金属化薄膜电容器已成为发展趋势。但干式电容器在制造过程中介质薄膜层间不可避免的存有气隙,当运行的脉冲或交流电压超过电容器的电离电压时,在电场作用下上述层间存在的气隙会发生电离,导致金属化镀层被蒸发而形成大小不一的电离斑点。不断发生的气隙电离会严重减小金属化镀层电极的有效面积,从而显著降低电容器的电容量而影响整个系统的正常运行。分析表明:气隙电离不会导致电容器介质的电离性击穿,只会因电容量的减小而降低其使用寿命;使用相对介电常数较大的介质材料制造的电容器,使用时发生气隙电离的门槛电压会降低,在相同工作条件下更易发生气隙电离;交流状态工作时,只要低于250v(有效值)即可防止发生气隙电离这一认知是有条件的,如果气隙偏多,即便在200v(有效值)或更低工作电压时同样可能发生气隙电离,这种气隙多少对于电离电压高低的影响在脉冲功率电容器中同样存在;通过多串联方法降低每一串电容器上的工作电压,使之低于其电离电压可以有效地防止气隙电离的发生。对于干式高能量密度的脉冲功率电容器而言,为了保证其在允许的容衰条件下获得更多的充放电次数,从而延长电容器的使用寿命,这一点尤其重要。

参考文献:

[1] 周水杉,章莉.脉冲功率电容器的应用和发展 [j]. 电子元件与材料,2016,35(11).

[2]王莹. 脉冲功率科学与技术 [m].北京:北京航空航天大学出版社,2010, 392.

[3]谢道华.电容器性能与设计计算[m].北京:中国标准出? ?版社,1991.

[4]西安电力电容器研究室译.电容器的设计与计算[m].1972,? 21.

[5]ray bowker. chinese multiplier cap evaluation update [r].new york:spellman high voltage electronics corporation,2003.

[6]ray bowker.voltage cycle testing of small diameter hv caps [r].new york:spellman high voltage electronics corporation,2009.

----------------------------------

扫码关注丨红蜂工作室

转载-电子工程世界?2021-09-30 07:32

电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。

硬件工程师调试爆炸现场

所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。下面分类细叙一下各类电子元器件的失效模式与机理。

电阻器失效模式与机理

失效模式:各种失效的现象及其表现的形式。

失效机理:是导致失效的物理、化学、热力学或其他过程。

1、电阻器的主要失效模式与失效机理为

1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。

2) 阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。

3) 引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。

4) 短路:银的迁移,电晕放电。

2、失效模式占失效总比例表

(1) 线绕电阻

失效模式 占失效总比例 开路 90% 阻值漂移 2% 引线断裂 7% 其它 1%

(2) 非线绕电阻

失效模式 占失效总比例 开路 49% 阻值漂移 22% 引线断裂 17% 其它 7%

3、失效机理分析

电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。

(1) 导电材料的结构变化

薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。

电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。

结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。

电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃,寿命缩短一半。如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻器的寿命仅为正常情况下寿命的1/32。可通过不到四个月的加速寿命试验,即可考核电阻器在10年期间的工作稳定性。

直流负荷—电解作用:直流负荷作用下,电解作用导致电阻器老化。电解发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生离子电流。湿气存在时,电解过程更为剧烈。如果电阻膜是碳膜或金属膜,则主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。对于高阻薄膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏现象。在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的抗氧化或抗还原性能,以及保护层的防潮性能。

(2) 硫化

有一批现场仪表在某化工厂使用一年后,仪表纷纷出现故障。经分析发现仪表中使用的厚膜贴片电阻阻值变大了,甚至变成开路了。把失效的电阻放到显微镜下观察,可以发现电阻电极边缘出现了黑色结晶物质,进一步分析成分发现,黑色物质是硫化银晶体。原来电阻被来自空气中的硫给腐蚀了。

(3) 气体吸附与解吸

膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的接触,从而明显影响阻值。

合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附气体,改善了导电颗粒之间的接触,使阻值下降。同样,在真空中制成的热分解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,使阻值增大。如果将未刻的半成品预置在常压下适当时间,则会提高电阻器成品的阻值稳定性。

温度和气压是影响气体吸附与解吸的主要环境因素。对于物理吸附,降温可增加平衡吸附量,升温则反之。由于气体吸附与解吸发生在电阻体的表面。所以对膜式电阻器的影响较为显著。阻值变化可达1%~2%。

(4) 氧化

氧化是长期起作用的因素(与吸附不同),氧化过程是由电阻体表面开始,逐步向内部深入。除了贵金属与合金薄膜电阻外,其他材料的电阻体均会受到空气中氧的影响。氧化的结果是阻值增大。电阻膜层愈薄,氧化影响就更明显。

防止氧化的根本措施是密封(金属、陶瓷、玻璃等无机材料)。采用有机材料(塑料、树脂等)涂覆或灌封,不能完全防止保护层透湿或透气,虽能起到延缓氧化或吸附气体的作用,但也会带来与有机保护层有关的些新的老化因素。

(5) 有机保护层的影响

有机保护层形成过程中,放出缩聚作用的挥发物或溶剂蒸气。热处理过程使部分挥发物扩散到电阻体中,引起阻值上升。此过程虽可持续1~2年,但显著影响阻值的时间约为2~8个月,为了保证成品的阻值稳定性,把产品在库房中搁置一段时间再出厂是比较适宜的。

(6) 机械损伤

电阻的可靠很大程度上取决于电阻器的机械性能。电阻体、引线帽和引出线等均应具有足够的机械强度,基体缺陷、引线帽损坏或引线断裂均可导致电阻器失效。

电解电容失效

失效模式

1、耗尽失效

耗尽失效(1)

通常电解电容器寿命的终了评判依据是电容量下降到额定(初始值)的80%以下。由于早期铝电解电容器的电解液充盈,铝电解电容器的电容量在工作早期缓慢下降。随着负荷过程中工作电解液不断修补倍杂质损伤的阳极氧化膜所致电解液逐渐减少。到使用后期,由于电解液挥发而减少,粘稠度增大的电解液就难于充分接触经腐蚀处理的粗糙的铝箔表面上的氧化膜层,这样就使铝电解电容器的极板有效面积减小,即阳极、阴极铝箔容量减少,引起电容量急剧下降。因此,可以认为铝电解电容器的容量降低是由于电解液挥发造成。而造成电解液的挥发的最主要的原因就是高温环境或发热。

耗尽失效(2)

由于应用条件使铝电解电容器发热的原因是铝电解电容器在工作在整流滤波(包括开关电源输出的高频整流滤波)、功率电炉的电源旁路时的纹波(或称脉动)电流流过铝电解电容器,在铝电解电容器的esr产生损耗并转变成热使其发热。

当铝电解电容器电解液蒸发较多、溶液变稠时,电阻率因粘稠度增大而上升,使工作电解质的等效串联电阻增大,导致电容器损耗明显上升,损耗角增大。例如对于105度工作温度的电解电容器,其最大芯包温度高于125度时,电解液粘稠度骤增,电解液的esr增加近十倍。.增大的等效串联电阻会产生更大热量,造成电解液的更大挥发。如此循环往复,铝电解电容器容量急剧下降,甚至会造成爆炸。

耗尽失效(3)

漏电流增加往往导致铝电解电容器失效。

应用电压过高和温度过高都会引起漏电流的增加

2、压力释放装置动作

压力释放装置动作

为了防止铝电解电容器中电解液由于内部高温沸腾的气体或电化学过程而产生的气体而引起内部高气压造成铝电解电容器的爆炸。为了消除铝电解电容器的爆炸,直径8毫米以上的铝电解电容器均设置了压力释放装置,这些压力释放装置在铝电解电容器内部的气压达到尚未使铝电解电容器爆炸的危险压力前动作,泄放出气体。随着铝电解电容器的压力释放装置的动作,铝电解电容器即宣告失效。

铝电解电容器压力释放装置(中间的十字)

电化学过程导致压力释放装置动作

铝电解电容器的漏电流就是电化学过程,前面已经详尽论述,不再赘述。电化学过程将产生气体,这些气体的聚积将造成铝电解电容器的内部气压上升,最终达到压力释放装置动作泄压。

温度过高导致压力释放装置动作

铝电解电容器温度过高可能是环境温度过高,如铝电解电容器附近有发热元件或整个电子装置就出在高温环境;

铝电解电容器温度过高的第二个原因是芯包温度过高。铝电解电容器芯包温度过高的根本原因是铝电解电容器流过过高的纹波电流。过高的纹波电流在铝电解电容器的esr中产生过度的损耗而产生过度的发热使电解液沸腾产生大量气体使铝电解电容器内部压力及急剧升高时压力释放装置动作。

3、瞬时超温

通常铝电解电容器的芯包核心温度每降低10℃,其寿命将增大到原来的一倍。这个核心大致位于电容器的中心,是电容器内部最热的点。可是,当电容器升温接近其最大允许温度时,对于大多数型号电容器在125℃时,其电解液要受到电容器芯包的排挤(driven),导致电容器的esr增大到原来的10倍。在这种作用下,瞬间超温或过电流可以使esr永久性的增大,从而造成电容器失效。在高温和大纹波电流的应用中特别要警惕瞬时超温发生的可能,还要额外注意铝电解电容器的冷却。

4、瞬时过电压的产生

上电冲击

上电过程中,由于滤波电感释放储能到滤波电容器中,导致滤波电容器的过瞬时过电压。

上电过电压示意

电容过电压失效的防范

电容器在过压状态下容易被击穿,而实际应用中的瞬时高电压是经常出现的。

选择承受瞬时过电压性能好的铝电解电容器,rifa有的铝电解电容器就给出了瞬时过电压值得参数。

5、电解液干涸是铝电解电容器失效的最主要原因

电解液干涸的原因

电解液自然挥发

电解液的消耗

电解液自然挥发

电解液的挥发速度随温度的升高

电解液的挥发速度与电容器的密封质量有关,无论在高温还是在低温条件下都要有良好的密封性

电解液的消耗

漏电流所引起的电化学效应消耗电解液

铝电解电容器的寿命随漏电流增加而减少

漏电流随温度的升高而增加:25℃时漏电流仅仅是85℃时漏电流的不到十分之一漏电流随施加电压升高而增加:耐压为400v的铝电解电容器在额定电压下的漏电流大约是90%额定电压下的漏电流的5倍。

6、电解液干涸的时间就是铝电解电容器的寿命

影响铝电解电容器寿命的的因素(温度1)

根据铝电解电容器的电解液的不同,铝电解电容器的最高工作温度可分为:

一般用途:85℃

一般高温用途:105℃

特殊高温用途:125℃

汽车发动机舱:140~150℃

影响铝电解电容器寿命的的因素(额定寿命小时数)

按寿命小时数铝电解电容器可以分为:

一般用途(常温,3年以内):1000小时

一般用途(常温,希望比较长的时间):2000小时以上

工业级:更长的寿命小时数

影响铝电解电容器寿命的的因素(温度2)

温度每升高10℃,寿命小时数减半

影响铝电解电容器寿命的的因素(电解液)

电解液的多与寡决定铝电解电容器的寿命

影响铝电解电容器寿命的的因素(应用条件)

高温缩短铝电解电容器寿命

高纹波电流缩短铝电解电容器寿命

工作电压过高缩短铝电解电容器寿命

7、影响铝电解电容器寿命的参数与应用条件

工作电压与漏电流的关系

某公司生产的450v/4700μf/85℃铝电解电容器的漏电流与施加电压的关系

温度与漏电流的关系

某公司生产的450v/4700μf/85℃铝电解电容器的漏电流与环境温度的关系

温度、电压、纹波电流共同作用对寿命的影响

以某电子镇流器用铝电解电容器为例。

在不同的电压与温度条件下的铝电解电容器寿命不同

某电子镇流器用铝电解电容器降额寿命特性

某电子镇流器用铝电解电容器的过电压寿命特性

铝电解电容器的寿命与温度、纹波电流的关系

电感失效分析

电感器失效模式:电感量和其他性能的超差、开路、短路

模压绕线片式电感失效机理:

1.磁芯在加工过程中产生的机械应力较大,未得到释放

2.磁芯内有杂质或空洞磁芯材料本身不均匀,影响磁芯的磁场状况,使磁芯的磁导率发生了偏差;

3.由于烧结后产生的烧结裂纹;

4.铜线与铜带浸焊连接时,线圈部分溅到锡液,融化了漆包线的绝缘层,造成短路;

5.铜线纤细,在与铜带连接时,造成假焊,开路失效

1、耐焊性

低频片感经回流焊后感量上升 《 20%

由于回流焊的温度超过了低频片感材料的居里温度,出现退磁现象。片感退磁后,片感材料的磁导率恢复到最大值,感量上升。一般要求的控制范围是片感耐焊接热后,感量上升幅度小于20%。

耐焊性可能造成的问题是有时小批量手工焊时,电路性能全部合格(此时片感未整体加热,感量上升小)。但大批量贴片时,发现有部分电路性能下降。这可能是由于过回流焊后,片感感量会上升,影响了线路的性能。在对片感感量精度要求较严格的地方(如信号接收发射电路),应加大对片感耐焊性的关注。

检测方法:先测量片感在常温时的感量值,再将片感浸入熔化的焊锡罐里10秒钟左右,取出。待片感彻底冷却后,测量片感新的感量值。感量增大的百分比既为该片感的耐焊性大小

2、可焊性

电镀简介

当达到回流焊的温度时,金属银(ag)会跟金属锡(sn)反应形成共熔物,因此不能在片感的银端头上直接镀锡。而是在银端头上先镀镍(2um 左右) ,形成隔绝层,然后再镀锡(4-8um )。

可焊性检测

将待检测的片感的端头用酒精清洗干净,将片感在熔化的焊锡罐中浸入4秒钟左右,取出。如果片感端头的焊锡覆盖率达到90%以上,则可焊性合格。

可焊性不良

1)端头氧化:当片感受高温、潮湿、化学品、氧化性气体(so2、no2等)的影响, 或保存时间过长,造成片感端头上的金属sn氧化成sno2,片感端头变暗。由于sno2不和sn、 ag、cu等生成共熔物,导致片感可焊性下降。片感产品保质期:半年。如果片感端头被污染,比如油性物质,溶剂等,也会造成可焊性下降

2)镀镍层太薄,吃银:如果镀镍时,镍层太薄不能起隔离作用。回流焊时,片感端头上的sn和自身的ag首先反应,而影响了片感端头上的sn和焊盘上的焊膏共熔,造成吃银现象,片感的可焊性下降。

判断方法:将片感浸入熔化的焊锡罐中几秒钟,取出。如发现端头出现坑洼情况,甚至出现瓷体外露,则可判断是出现吃银现象的。

3、焊接不良

内应力

如果片感在制作过程中产生了较大的内部应力,且未采取措施消除应力,在回流焊过程中,贴好的片感会因为内应力的影响产生立片,俗称立碑效应。

判断片感是否存在较大的内应力,可采取一个较简便的方法:

取几百只的片感,放入一般的烤箱或低温炉中,升温至230℃左右,保温,观察炉内情况。如听见噼噼叭叭的响声,甚至有片子跳起来的声音,说明产品有较大的内应力。

元件变形

如果片感产品有弯曲变形,焊接时会有放大效应。

焊接不良、虚焊

焊接正常

焊盘设计不当

a.焊盘两端应对称设计,避免大小不一,否则两端的熔融时间和润湿力会不同

b.焊合的长度在0.3mm以上(即片感的金属端头和焊盘的重合长度)

c.焊盘余地的长度尽量小,一般不超过0.5mm。

d.焊盘的本身宽度不宜太宽,其合理宽度和mlci宽度相比,不宜超过0.25mm

贴片不良

当贴片时,由于焊垫的不平或焊膏的滑动,造成片感偏移了θ角。由于焊垫熔融时产生的润湿力,可能形成以上三种情况,其中自行归正为主,但有时会出现拉的更斜,或者单点拉正的情况,片感被拉到一个焊盘上,甚至被拉起来,斜立或直立(立碑现象)。目前带θ角偏移视觉检测的贴片机可减少此类失效的发生

焊接温度

回流焊机的焊接温度曲线须根据焊料的要求设定,应该尽量保证片感两端的焊料同时熔融,以避免两端产生润湿力的时间不同,导致片感在焊接过程中出现移位。如出现焊接不良,可先确认一下,回流焊机温度是否出现异常,或者焊料有所变更。

电感在急冷、急热或局部加热的情况下易破损,因此焊接时应特别注意焊接温度的控制,同时尽可能缩短焊接接触时间

回流焊推荐温度曲线

手工焊推荐温度曲线

4、上机开路

虚焊、焊接接触不良

从线路板上取下片感测试,片感性能是否正常

电流烧穿

如选取的片感,磁珠的额定电流较小,或电路中存在大的冲击电流会造成电流烧穿,片感或磁珠 失效,导致电路开路。从线路板上取下片感测试,片感失效,有时有烧坏的痕迹。如果出现电流烧穿,失效的产品数量会较多,同批次中失效产品一般达到百分级以上。

焊接开路

回流焊时急冷急热,使片感内部产生应力,导致有极少部分的内部存在开路隐患的片感的缺陷变大,造成片感开路。从线路板上取下片感测试,片感失效。如果出现焊接开路,失效的产品数量一般较少,同批次中失效产品一般小于千分级。

5、磁体破损

磁体强度

片感烧结不好或其它原因,造成瓷体强度不够,脆性大,在贴片时,或产品受外力冲击造成瓷体破损

附着力

如果片感端头银层的附着力差,回流焊时,片感急冷急热,热胀冷缩产生应力,以及瓷体受外力冲击,均有可能会造成片感端头和瓷体分离、脱落;或者焊盘太大,回流焊时,焊膏熔融和端头反应时产生的润湿力大于端头附着力,造成端头破坏。

片感过烧或生烧,或者制造过程中,内部产生微裂纹。回流焊时急冷急热,使片感内部产生应力,出现晶裂,或微裂纹扩大,造成瓷体破损。

半导体器件失效分析

半导体器件失效分析就是通过对失效器件进行各种测试和物理、化学、金相试验,确定器件失效的形式(失效模式),分析造成器件失效的物理和化学过程(失效机理),寻找器件失效原因,制订纠正和改进措施。加强半导体器件的失效分析,提高它的固有可靠性和使用可靠性,是改进电子产品质量最积极、最根本的办法,对提高整机可靠性有着十分重要的作用。

半导体器件与使用有关的失效十分突出,占全部失效器件的绝大部分。进口器件与国产器件相比,器件固有缺陷引起器件失效的比例明显较低,说明进口器件工艺控制得较好,固有可靠性水平较高。

1、与使用有关的失效

与使用有关的失效原因主要有:

过电应力损伤、静电损伤、器件选型不当、使用线路设计不当、机械过应力、操作失误等。

①过电应力损伤。过电应力引起的烧毁失效占使用中失效器件的绝大部分,它发生在器件测试、筛选、安装、调试、运行等各个阶段,其具体原因多种多样,常见的有多余物引起的桥接短路、地线及电源系统产生的电浪涌、烙铁漏电、仪器或测试台接地不当产生的感应电浪涌等。按电应力的类型区分,有金属桥接短路后形成的持续大电流型电应力,还有线圈反冲电动势产生的瞬间大电流型电应力以及漏电、感应等引起的高压小电流电应力;按器件的损伤机理区分,有外来过电应力直接造成的pn结、金属化烧毁失效,还有外来过电应力损伤pn结触发cmos电路闩锁后引起电源电流增大而造成的烧毁失效。

②静电损伤。严格来说,器件静电损伤也属于过电应力损伤,但是由于静电型过电应力的特殊性以及静电敏感器件的广泛使用,该问题日渐突出。静电型过电应力的特点是:电压较高(几百伏至几万伏),能量较小,瞬间电流较大,但持续时间极短。与一般的过电应力相比,静电型损伤经常发生在器件运输、传送、安装等非加电过程中,它对器件的损伤过程是不知不觉的,危害性很大。从静电对器件损伤后的失效模式来看,不仅有pn结劣化击穿、表面击穿等高压小电流型的失效模式,也有金属化、多晶硅烧毁等大电流失效模式。

③器件选型不当。器件选型不当也是经常发现的使用问题引起失效的原因之一,主要是设计人员对器件参数、性能了解不全面、考虑不周,选用的器件在某些方面不能满足所设计的电路要求。

④操作失误。操作失误也是器件经常出现的失效原因之一,例如器件的极性接反引起的烧毁失效等。

2、器件固有缺陷引起的失效

与器件固有缺陷有关的失效原因主要有:表面问题、金属化问题、压焊丝键合问题、芯片键合问题、封装问题、体内缺陷等。在这几种原因中,对器件可靠性影响较大的是表面问题、键合问题和粘片问题引起的失效,它们均带有批次性,且经常重复出现。

(1) 表面问题

从可靠性方面考虑,对器件影响最大的是二氧化硅层内的可动正离子电荷,它会使器件的击穿电压下降,漏电流增大,并且随着加电时间的增加使器件性能逐渐劣化。有这种缺陷的器件用常规的筛选方法不能剔除,对可靠性危害很大。此外,芯片表面二氧化硅层中的针孔对器件可靠性的影响也较大。有这种缺陷的器件,针孔刚开始时往往还有一层极薄的氧化层,器件性能还是正常的,还可顺利通过老炼、筛选等试验,但长期使用后由于tddb效应和电浪涌的冲击,针孔就会穿通短路,引起器件失效。

(2) 金属化问题

引起器件失效的常见的金属化问题是台阶断铝、铝腐蚀、金属膜划伤等。对于一次集成电路,台阶断铝、铝腐蚀较为常见:对于二次集成电路来说,内部金属膜电阻在清洗、擦拭时被划伤而引起开路失效也是常见的失效模式之一。

(3) 压焊丝键合问题

常见的压焊丝键合问题引起的失效有以下几类。

①压焊丝端头或压焊点沾污腐蚀造成压焊点脱落或腐蚀开路。

②外压焊点下的金层附着不牢或发生金铝合金,造成压焊点脱落。

③压焊点过压焊,使压焊丝颈部断开造成开路失效。

④压焊丝弧度不够,与芯片表面夹角太小,容易与硅片棱或与键合丝下的金属化铝线相碰,造成器件失效。

(4) 芯片键合问题

最常见的是芯片粘结的焊料太少、焊料氧化、烧结温度过低等引起的开路现象。芯片键合不好,焊料氧化发黑,导致芯片在"磁成形"时受到机械应力作用后从底座抬起分离,造成开路失效。

(5) 封装问题

封装问题引起的失效有以下几类。

①封装不好,管壳漏气,使水汽或腐蚀性物质进入管壳内部,引起压焊丝和金属化腐蚀。

②管壳存在缺陷,使管腿开路、短路失效。

③内涂料龟裂、折断键合铝丝,造成器件开路或瞬时开路失效。这种失效现象往往发生在器件进行高、低温试验时。

(6) 体内缺陷

半导体器件体内存在缺陷也可引起器件的结特性变差而失效,但这种失效形式并不多见,而经常出现的是体内缺陷引起器件二次击穿耐量和闩锁阈值电压降低而造成烧毁。

免责声明:本文系网络转载,凯发k8国际的版权归原作者所有。如本文所用视频、图片、文字如涉及作品凯发k8国际的版权问题,请在文末留言告知,我们将在第一时间处理!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。

文章凯发k8国际的版权声明:除非注明,否则均为苗坤旺离型膜原创文章,转载或复制请以超链接形式并注明出处。

相关阅读

发表评论

快捷回复: 表情:
addoilapplausebadlaughbombcoffeefabulousfacepalmfecesfrownheyhainsidiouskeepfightingnoprobpigheadshockedsinistersmileslapsocialsweattolaughwatermelonwittywowyeahyellowdog
评论列表 (暂无评论,6人围观)

还没有评论,来说两句吧...

微信二维码
微信二维码
支付宝二维码
网站地图